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Inforrmation Functions of the Generalized Partial Credit Model

ABSTRACT

The cencept of information functions developed for dichotomous item
respense models is adapted for the partial credit model. The
information function is explained in terms of the model parameters
and scoring functions. ' The relationship between the item
information function and the expected score function is also
discussed. The information “unction is then used to investigate the
effect of collapsing and re.oding categories of polytomously-scored
items of the National Assessment of Educational Progress (NAEP).
Finally, the NAEP writing items are calibrated and the item and test

information is used to discuss desirable properties of polytomous
items.

Index terms: item response model
polytomous item response model
partial credit model
information function
NAEP
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Tests have been basically constructed to measure the ability levels of
test trkers. Since the information function based on the item response theory
providas valuable information about the precision of measurement at a
specified ability level, the information function has been widely used for
various applications that are central to the field of measurement (Hambleton
and Swaminathan, 1985). The applications of the information function for
dichotomously-scored test items have been extensively studied, but the
investigation of the polytomous item response model using the concept of the
information function has not been fully explored yet. The partial credit
model is frequently used for analyses of polytomous cognitive and affective
response data. In this paper, the advantages of the: applications of the
partial credit model are demonstrated and compaved to the dichotomous item
response model by applying the information function. The cautionary remarks

about the uncritical applications of the partial credit model are also
mentioned.

The Generalized Partial Credit Model

The generalized partial credit model (Muraki, 1992) is formulated on the
assumption that the probability of choosing the kth category over the k-1th
category is governed by the logistic dichotomous response model, that is,

P, (0) _ _explDa;(8-by)]
Pj.k—i (e) "‘ij (e) l+exp [Daj (B-bjk) ]

Zir1e,k(0) =

€))

where k=2, 3, ..., my. The generalized partial credit model is, then, written
as

Xk
explY. 2,,(8)]
ij(e) = =1 (2)
g -]
Y expl} 2,,(0)]
o=l =1
and
Z4(8) = Day(8-by,) = Day(0-by-dy) 3)

where D is a scaling constant that puts the § scale in the same metric as the
normal ogive model (D=1.7), a, is a slope parameter, by, is an item-category,
b, is an item location parameter, and dy is a category parameter.

If the number of response categories is m;, only m,-~l category parameters
can be estimated. Any one of the m, category threshold parameters can be
defined as any value. This is because the term including the parameter is
canceled out from both the numerator and denominator of the model (Muraki,
1992). We arbitrarily define d, = O.
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If a single Likert scale is used to evoke categorical responses for a set
of items, the hypothesis that the set of items share common category
parameters can be tested. If the assumption of a common set of category
parameters for those items is not found to be appropriate, we fit a model in
which category parameters differ between items. For both models, the notation
dy instead of d,; can usually be used without confusion. A step-wise
application r ¢ these two models to data was demonstrated by Muraki (1992).

The partial ..edit model with a constant slope parameter was introduced by
Masters (1982). This model is a special case of the generalized partial

credit model in Equation 2. The comparison between these models was also
discussed by Muraki (1992). :

For the generalized partial credit model, there is an indeterminacy in
the set of category parameters and location parameter. The following
constraint, called a location constraint, is imposed on the category
parameters within a categorical scale:

g, =0 O)
kw2

The partial credit model contains the element zﬁ:(o), that is,

x .
Z5(0) = ¥ 2,,(8) (3
=1

where Z;,(8) is defined by Equation 3. The sum of Z;,(6) in Equation 5 can be
written as

k
Z3x(8) = Da;[(k(8-b,)+Y" d. (6)
=1
and the model above can be rewritten as

Z3x(8) = Day[T,(8-b,) +K;] )

Andrich (1978) calls Ty, and Ky the scoring function and the category
coefficient, respectively. For the partial credit model, the scoring function
Ty is a linear integer scoring functiom, that is, I=(1, 2, 3, ..., m,) where
my is the number of categories of item j.

The log-odds of the model probabilities Py .1(f) and Py (f) can be
expressed as

2/




Ay ptper = Dayl{Tp=Tyy) (6-Dy) +dy] (8)

Equation 8 shows that the log-odds becomes a monotonically increasing function
of the latent trait, ¢, only when the incremental change in the scoring
function is used for successive categorical responses. The higher 6§ value a
subject has, the more likely he/she responds to upper categories. In other
words, the partial credit model becomes a model for ordered categorical
responses only when the scoring function is increasing, that is, Ty > Ty-1,
for any k and a,>0. If the linear integer scoring function is used, the item-
category characteristic curves (ICCCs) of P, ,;.1(6) and Py (8) intersect at the
point by in the ¢ scale. When a person’s ability 0 is greater by, the person
more likely chooses the kth category than the k-1th category. In this case,
the log-odds in Equation 8 is positive. The log-odds increases as ability
level increases. When a person’s ability ¢ is less than by, the person more
likely chooses the k~1lth category than the kth category. 1In this case, the
log~odds is negative. The odds of choosing the k-1lth category compared to the
kth category increases as the ability level becomes lower.

The generalized partial credit model in Equation 2 can be rewritten,
using the scoring function and the category coefficient, as

exp [Da, [T, (0-b,) +K;] ]

-y

; exp [Da, [T (0-b,) +K.]]

ij(e) =

(9

The model expressed by Equation 9 is similar to the nominal response
model (Bock, 1972). The relationship to the generalized partial credit model
is discussed by Thissen and Steinberg (1986). The scoring function also
provides a convenient notation for collapsing or recoding categorical
responses. For example, if the number of categorical responses of an item is
five, then a scoring function I can be specified as T=(1,2,3,4,5). If the
original response categories are collapsed by combining the first and second
categories into one category, the mcdified scoring function I’ can be written
as T’'=(1,1,2,3,4). If this modification of the response categories is recoded
by treating the original fourth category as the fifth and the original fifth

as the fourth, the scoring function can be further modified to
r '-(1,1,2,4,3).

Information Function

The item information functiom, I,(f), represents the information
contributed by a specific item j across the range of §. The item information
for the polytomous item response model was proposed by Samejima (1974} as
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=y
7,(8) = ¥ TP, (6) (11)
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The value of T,(d) is called the expected score function. Thus, the item
information is the expected variance of scoring functions based on the model
probability along the ¢ level multiplied by (Da,)2. Notice that the second
derivative of the logarithm of categorical probability, P,.(¢), with respect

to § is invariant with the category k. For the case of dichotomous item
responses, Equation 11 can be simplified to

I,(8) = D*a}(T,~T,)2P,, (8) Py, (6) (12)
where P52(0)—1-P51(9).

Bock (1972) proposed defining the information due to the response in

category k of item j as a partition of the item information due to that
category, that is,

Ijk(e) = ij(e) Ij(e) (13)

Equation 13 may be called the item-category information function. The item-

category information functions of I;,.;(f) and I,,(§) intersect at the point
of by in the § scale.

The item information function can also be expressed as the summation of
the item-category information function:

Corp
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7,(0) = g: I, () (14)
1

Finally, the test information function is defined as the summation of item
information functions:

1(8) = ; 1,(8) (15)
-1

Plotting the ICCCs of Py, (#) for k=1, 2, ..., my and their information
functions is an essential step to interpretation of the parameters of the
polytomous item response model. Figures 1,2, 3, 4, and 5 show plots of ICCCs
of the generalized partial credit model with three categorical responses,
where a;=l1 and I=(1, 2, 3). The only differences among these items are the
values of the itew-category parameters, b,. Figures 1 through 5 show five
items with b;=(0., 2., -4.), b,=(0., 2., ~2.), bs=(0., 2., 0.), b.=(0., 2
2.), and bg=(0., 2., 4.), respectively. ’
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Insert Figures 1, 2, 3, 4, and 5 about here
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As shown in Figures 1 through 5, the third ICCC, P,3(#), shifts to the
left along the ¢ scale as the item-category parameter b,, changes from -4.0 to
4.0 because the intersection of the second and third ICCCs, P,;,(f) and P,;(4),
moves from 4.0 to -4.0. Since the third category probability, P,; becomes
dominant over the 6 axis from -6.0 toc 6.0, the expected frequency of the third
categorical response increases, assuming-the latent trait is distributed
normally with the mean zero. As the third category probability moves from the
right to the left, the second category probability is being pushed downward.
The expected frequency of the second category decreases as the distance
between the second and third item-category parameters, b,, and b,;, decreases.
The second and third item-category parameters are equal for item 4, and then
the order of these parameters are interchanged for item 5. As shown in Figure
5, the polytomous responses for item 5 become essentially dichotomous item

responses since the second category becomes a category not likely occurring as
a response.

Item~-category information functions and item information functions of
items 1, 2, 3, 4, and S are shown in Figures 6, 7, 8, 9, and 10, respectively.
The item information of polytomous item responses is not necessarily unimodal
like that of dichotomous item responses. If the distance between the two
adjacent item-category parameters is large, like by, and by, in Figure 6, the
information becomes lower at the middle range of the # scale. The loss of
information over the middle range of the # level becomes less noticeable as
the distance between these parameters decreases, as shown in Figure 6. When
the distance between b,, and b33 is 2.0, the item information function looks
unimodal, as shown in Figure 8. This item is the most desirable if the item
is designed to cover a wide range cf # for a group of subjects whose abilities



"are assumed to be normally distributed. If the order of these parameters is
interchanged, the item information peaks over a very short range of the lower
¢ axis. Information at the higher ability levels is essentially lost. As
shown in Figure 10, the shape of the item information function resembles that
of dichotomous item responses. The plots of ICCCs and item and item-category

information functions of polytomously-scored items provide valuable item
analysis information.

FrRRIokdrkkredeickirioiek -dedcdcdododoickodokdok dedrdedodcdodok-dok

Insert Figures 6, 7, 8, 9, and 10 here
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The first derivative of tt:= expected score function with respect to § is

0] .’

»y
Das3 1T.-T;(8)1Ps(8) (16)

_ 1,8
Da,

>0

Because the first derivative of the expected score function with respect to #
in Equation 16 is always positive unless the slope parameter is negative, the
expected score function is a strictly increasing function of §. The expected
score functions of items 1, 2, 3, 4, and 5 are plotted in Figure 11. The
expected function becomes steeper if the slope parameter value or the item
information increases. The slope of the expected score function is largest at
the point of ¢ where the item information is a maximum. This is the reason
that the expected score functions of the five items are ordered along the §
axis in Figure 11. It should also be pointed out that item 1 appears to have
two extreme slopes because its item information has two modes.

Unlike the category parameters of the graded item response model
(Samejima, 1969, 1972; Muraki, 1990), the item-category or category
parameters are not necessarily ordered. However, if the order of the
parameters is interchanged as in item 5, the category is depressed and the
category becomes useless in terms of the contribution of the item-category

information to the total item information. Such items are usually
undesirable.
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Insert Figure 11
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The item-category information functions can be used to investigate the
appropriateness of collapsing or recoding of categorical responses. One item
from the 1990 mathematics cross-sectional assessment and two items from the
1990 science cross-—sectional assessment of the National Assessment of
Educational Progress (NAEP) are used to illustrate the behaviors of item-
category information functioms with respect to the collapsing and recoding of

categorical responses. Item parameters were calibrated by using the PARSCALE
program (Muraki and Bock, 1991).

The first example is a mathematics item with seven categories. The
scoring function is denoted as I;,~(1,2,3,4,5,6,7). The item parameters of
this item were estimated with other items in the assessment. Then, the sixth
and seventh categorical responses were combined and the parameters were
estimated again. The scoring function after this collapsing is denoted as
T¢=-(1,2,3,4,5,6,6). The collapsing process was continued until only two
categories remained. The scoring function of this collapsing is denoted as
I,-(1,2,2,2,2,2,2). After each collapsing, the model parameters were
estimated and the item information functions were computed. They are plotted
in Figure 12. Since the highest category was collapsed with the adjacent
categories in sequence, the peak of the item information fuaction moves to the
left along the § scale. In other words, by collapsing higher categorical
responses, the information about subjects with higher # values decreased. At

the same time, the maximum information is decreasing, except in changing from
T, to T
L3 L2-
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Insert Figure 12 about here
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The second example is a Life Science item with six categorical responses.
This item was administered to two age groups. The item response information
functions based on the item parameters estimated with the scoring function
1-(1,2,3,4,5,6) are plotted in Figure 13. The mean, v,, of the total score
distribution for the subgroup in category k (k=1, 2,..., 6) of the item was
computed. The means are y=(6.3, 7.7, 7.9, 8.3, 8.9, 10.2) and v=(8.5, 8.8,
9.4, 9.4, 10.5, 11.9) for the first and second age groups, respectively. The
means for the first and second categories for the second age group and the
means of the third and fourth categories for both age groups were very close
for both age groups. In other words, these categories did not seem to be
differentiated. Thus, Allen (1992) decided to combine these categories
forming four categorical responses. The scoring function for this collapsing
can be denoted as T=(1,1,2,2,3,4), and the item response functions based on
this scoring function are plotted in Figure 14. The item information
functions in Figures 5 and 6 are labeled 1+2+3+4+5+6 and 1+2+3+4,
respectively. The peak of the item information function becomes higher after
the collapsing, and the amount of information increases over the ¢ scale

except at its lower end, which may be explained by the collapsing effect of
lower categories.

322 22 2 22
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In.;ert Figures 13 and 14 about here
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The third example is a Physical Science item with four categorical
responses. This item was also administered to two age groups. The item
response informacion functions based on the item parameters estimated with the
scoring function, I=(1,2,3,4), are plotted in Figure 15. The mean vectors for
the two age groups are y=(4.8, 6.4, 6.2, 7.5) and ¥=(9.3, 10.9, 10.6, 11.5).
From these statistics, it can be suspected that the original codings of the
second and third categories were inappropriate (Allem, 1992). Thus, the
orders of the second and third categories were reversed, and the scoring
function can be denoted as T'=(1,3,2,4). The item response functions based on
this scoring function are plotted in Figure 16. The information increases
considerably over the range of 6 values from -4.0 to 4.0. The chi-square fit
statistic also improved from 370.002 with 87 degrees of freedom to 131.249
with 82 degrees of freedom. The difference, 218.753, with 5 degrees of
freedom is-a significant improvement for the model fit.
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Insert Figures 15 and 16 about here
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Analysis of the National Assessment of Educational Frogress - Writing
Assessment

The first NAEP writing assessment was conducted in 1984 (Grima and
Johnson, 1991). Since then, four NAEP writing assessments were conducted to

assess the trend of students’ writing performance over the years (1984, 1988,
1990, and 1992).

In the trend assessment, nationally representative samples of students in
grades 4, 8, and 11 respond to a serie. of writing tasks (or items). A set of
12 writing tasks were prepared to examine students’ abilities to engage in
three types of writing: informative, persuasive, and imaginative. The twelve
tasks were administered in a balanced incomplete block (BIB) design with six
of the twelve tasks presented to each grade. Some writing tasks were unique
to a specific grade, and others were utilized as linking items. Students’
writirgs were scored by trained readers on the basis of students’ success in
accowplishing the specific purpose of each writing task (as measured by
primary trait scoring), their relative writing fluency (as measured by
holistic scoring), and their mastery of the conventions of writing English (as
measured by their spelling, punctuation, and grammar). For this paper, only
the primary trait scores of the 1988 and 1990 assessments were analyzed.

For two writing tasks, a four-point scoring scale (Unsatisfactory through
Adequate) was used to evaluate students’ writings. For the remaining four
writing tasks, a five-point scoring scale (Unsatisfactory through Elaborate)
was used. Omitted responses were not rated. In the analysis, they were
treated as the lowest categorical response (Unsatisfactory). Item parameters
were calibrated based on the combined response data of the 1988 and 1990
assessment. Since we could not assume that the latent trait distributions of
these assessments were unchanged, a separate normal prior was used for each
assessment year. Torty one quadrature points were used for both prior
distributions. After each EM cycle, the means and standard deviations were

1’3




computed for these distributions. After each EM cycle, the weighted mean and
standard deviation of the combined distribution of these priors are adjusted

to 0.0 and 1.0, respectively. Intermediate estimated values were also
adjusted accordingly.

The sample sizes of the 1988 and 1990 assessments are 4878 and 5606,
respectively. Forty-six EM cycles were needed for convergence, using a
criterion of 0.001. Because there were no responses in the fifth category of
the second task in the 1990 assessment, the fourth and fifth categories of the
second task were combined for both years. Thus, the second task is treated as
an item of four categories. The estimated parameter wvalues for age 9 are
presented in Table 1. The item information functions of these six items (or
tasks) are plotted in Figures 17, 18, 19, 20, 21, and 22. The test
information function is plotted in Figure 23.
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Insert Table 1 about here
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Since the slope parameter of the first item is low, the item information
function is relatively flat over the range of the ¢ scale. In addition to a
low slope parameter, item 3 also has widely-dispersed category parameters.
Because of this combination, when compared to the other items, the item
information function for this item is the lowest of the six items for all ¢
values. The slope parameter of item 4 is not extremely low compared to items
1 and 3, but the category parameters are considerably dispersed .
‘Consequently, the amount of information increases over the # scale, but the
information curve is relatively flat. The best items among the six seem to be
items 5 and 6. The amount of information for item 5 is large for the lower
end of the 6§ scale because the location parameter of this item is low.
Compared to item 5, the information function of item 6 is more symmetric and
reasonably high over the range of -3 to 3 of the § scale. The test
information plot in Figure 23 shows that this set of six items produces a
reasonable amount of information for the range of 4.

Conclusion

The concept of information functions developed for dichotomous item
response models (Lord, 1980; Lord and Novick, 1968) is adapted for the partial
credit model. Because of the complex relationships among the parameters of
the partial credit model, the plots of the ICCCs should be a routine step for
analyses of test items. Computing and plotting the item-category and item

9



information functions based on the partial credit model is also an essential
procedure of item analyses. Information functions with other conventional
item statistics provide valuable information about how to collapse or reorder
categorical responses. It was pointed out that increasing the number of
categorical responses does not automatically increase the information about
ability levels for the entire range of the # scale. Assembling polytomous
items into & desirable test is also facilitated by using the information
functions. Cureful investigation of each test item in terms of its
information function leads to desirable test construction methodology for
polytomously-scored items. Applications of the partial credit model to
polytomous items discussed in this paper is only an initial endeavor for this
new psychometric field. Further investigation of the partial credit model and
related concepts is needed.
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Table 1

Item Parameters of NAEP Writing Items:
1988 & 1990 Age 9

'__——_=T-
Item Slope Location Category Item-
Categoxy

1 0.370 -1.362 4,015 -5.377
~4.835 3.473
0.819 -2.181

2 0.617 -0.288 2.764 -3.032
-0.747 0.459
-1.997 1.709

3 0.507 1.053 4.628 -3.575
2.083 -1.030
-1.053 2.106
-5.659 6.712

4 0.706 0.595 4,059 -3.464
0.983 -0.388
-1.351 1.946
-3.691 4.286

5 0.969 -1.114 1.844 -2.958
-0.252 ~0.862
-1.592 0.478

6 0.981 0.522 2.705 -2.183
0.677 -0.156
-0.441 0.963
-2.942 3.463
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Figure 12

tem Information of Math item
T7=(1,2,3,4,5,6,7), T6=(1,2,3,4,5,6,6), T5=(1,2,3,4,5,5,5)
T4=(1,2,34,44,4), T3=(1,23,38,3,3,3), T2=(1,22,2,2,2,2)
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Figure 23

Test Information of the NAEP Writing ltems
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